Expand P(A1 ( A2 ( …. ( An)

John NG (11/2001)

We all know

P(A ( B) = P(A) + P(B) ( P(A ( B) --- (*)

How about P(A ( B ( C) ? Just regard A ( B (say) as a whole and apply (*) again, hence

P((A ( B) ( C) 

= P(A ( B) + P(C) ( P[(A ( B) ( C]

= P(A ( B) + P(C) ( P[(A ( C) ( (B ( C)] (Simple set theory)

= P(A) + P(B) ( P(A ( B) + P(C) ( [P(A ( C) + P(B ( C) ( P(A ( C ( B ( C)] (By (*) again)

= P(A) + P(B) + P(C) ( [P(A ( B) + P(B ( C) + P(C ( A)] + P(A ( B ( C)

For simplicity, we may write:

P((A ( B) ( C) = (P(A) ( (P(A ( B) + P(A ( B ( C) = (P(A) ( (P(A ( B) + P(A ( B ( C).

Now, how about P(A1 ( A2 ( …. ( An) ? From above, we guess:


P(A1 ( A2 ( …. ( An)

= 
[image: image1.wmf]å

=

n

i

i

A

P

1

)

(

 ( 
[image: image2.wmf]å

£

<

£

Ç

n

j

i

j

i

A

A

P

1

)

(

 + 
[image: image3.wmf]å

£

<

<

£

Ç

Ç

n

k

j

i

k

j

i

A

A

A

P

1

)

(

 ( … + ((1)n(1P(A1 ( A2 ( …. ( An) 

We can show it by Mathematical Induction.

P(A1 ( A2 ( …. ( Am ( Am+1)

= P((A1 ( A2 ( …. ( Am) ( Am+1)

= P(A1 ( A2 ( …. ( Am) + P(Am+1) ( P((A1 ( A2 ( …. ( Am) ( Am+1)

= 
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  + P(Am+1) ( P((A1 ( Am+1) ( (A2 ( Am+1) ( …( (Am ( Am+1))  (M.I. assumption)
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  ((1)m(1P(A1 ( A2 ( …. ( Am ( Am+1)]  (M.I. assumption again)
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Hence by the principle of Mathematical Induction, the statement is true for all natural number n.

Application: Envelopes' problem
n letters are taken out of n envelopes and then randomly put back to the envelopes. Find the probability that at least 1 letter is put back to the correct envelope.

Solution

Let Ai = event that the i-th letter is put back to the correct envelope, hence we have

P(A1) = P(A2) = … = P(An) = 
[image: image16.wmf]n
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 (Think about lucky draw.)

For i ( j, P(Ai ( Aj) = P(i-th letter is put correctly and j-th letter is put correctly) = 
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For distinct i, j, k, P(Ai ( Aj ( Ak) = 
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P(A1 ( A1 ( …( An) = 
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The required probability = P(A1 ( A2 ( …. ( An) 

= 
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Knowing that ex = 1 + 
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 + …Hence, suppose Pn be the probability above, then we have
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Surprisingly, we can yield an irrational number out of a probability problem. Besides, for sufficiently large number of letters (i.e. n), the probability that obtaining all letters being put wrongly tends to a constant 1/e. 

To solve the envelopes' problem, apart from the method mentioned above, we can use so-called the "recurrence relation".
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